If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7w^2-4w=3
We move all terms to the left:
7w^2-4w-(3)=0
a = 7; b = -4; c = -3;
Δ = b2-4ac
Δ = -42-4·7·(-3)
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-10}{2*7}=\frac{-6}{14} =-3/7 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+10}{2*7}=\frac{14}{14} =1 $
| (x+14)+(3x+2)=180 | | 805a^2=0 | | 3x+2/3=5/9 | | 15x-6/20=x+1/25 | | 3x+4^2-5=22.5 | | -4.5(x-8.5)=12.6 | | x/7+4=12;x | | 6y^2+16y=6 | | 2x+5^2=32 | | 12(y-8)=48 | | 8x-7=29 | | 3x=42. | | t+20=5 | | 12=4(x-3)=40 | | x-3^2=16 | | 20x-20=120 | | x+4^2-4=0 | | 2x-1^2-25=0 | | -5x+4^2-19=26 | | 2x+2=6+4 | | x-3^2-36=0 | | 9=89-4y | | 16-(1/8)^2x=0 | | 5p^2-24p-5=0 | | 5=10^x-4 | | 0=4x^2-5x-+4 | | 1/x+1=1/2 | | x-3^2-25=0 | | 2(19-10y)+15y=31 | | 1.3(7−x)=1.1(5−x) | | −5(a+2)−2=−22 | | x-2^2-4=0 |